Laundry detergent pod: a rising cause of household poisoning

Da Eun Roh

Division of Pediatric Cardiology, Department of Pediatrics, Kyungpook National University Children’s Hospital, Daegu, Korea

With the increasing use of laundry detergent pods (LDPs) in Korea, pediatricians and emergency physicians should recognize the risk of poisoning by ingestion of the pods. This report describes a 15-month-old boy who ingested an LDP at home. At the time of hospitalization, he was alert and hemodynamically stable. However, 3 hours after the ingestion, he developed drowsiness, respiratory distress, and metabolic acidosis. Despite the initial supportive therapy, the acidosis worsened, requiring continuous renal replacement therapy. Metabolic acidosis improved within 1 hour after initiation of the continuous renal replacement therapy. He was discharged uneventfully on day 13. At 1-month follow-up, he did not show any sequelae. This case highlights the need for recognition of the risk of poisoning by LDP.

Key words: Accidents; Child; Continuous Renal Replacement Therapy; Detergents; Poisoning

Introduction

Laundry detergent pod (LDP) is a household product that is increasingly used. The pod consists of a single dose of highly concentrated liquid detergent sealed within a water-soluble film. Most LDPs are small in size and colorful with a candy-like appearance, enticing children ingest them. In the United States, Europe, and Japan where LDPs were first used, the majority of pediatric poisoning occurs in children younger than 6 years. This vulnerability of poisoning in young children may stem from the candy- or toy-like appearance of the pods. Although the use of the pods has been increasing in Korea since their first release in 2012, there are insufficient policies to prevent poisoning by the pods. It is essential to know the potential risk along with treatment options, clinical progress, and prognosis of LDP poisoning. However, there is a lack of pediatric reports on the poisoning in Korea. Herein, the author reports a case of Korean toddler who was hospitalized due to LDP poisoning. This study was approved by the institutional review board with a waiver for informed consent (IRB no. KNUCH 2020–11–008).
Case

A previously healthy, 15-month-old boy was brought to the emergency department with vomiting after ingestion of one LDP at home. He had no specific past medical or family history. The initial vital signs were as follows: blood pressure, 94/48 mmHg; heart rate, 154 beats/min; respiratory rate, 38 breaths/min; temperature, 36.3°C; and oxygen saturation, 100% on room air. His mentality was alert and appeared well. No abnormalities were detected on neurological examination. No rale or wheezing was found in both lungs, and no evidence of mucosal burns or injury was found in the oral cavity and upper airway. He weighed 10.2 kg (50th percentile).

After confirming his alertness and stable vital signs, fluid therapy with nil per os was started while evaluating the manifestations of LDP poisoning. Initial venous blood gas analysis (VBGA) findings were as follows: pH, 7.34; PCO₂, 32.1 mmHg; HCO₃⁻, 16.9 mEq/L; base excess (BE), -7.8 mEq/L; and lactate, 7.5 mmol/L. Initial laboratory findings showed a white blood cell count of 16,560/μL, hemoglobin concentration of 13.1 g/dL, and platelet count of 424,000/μL. Other laboratory findings were within normal limits.

No radiographic abnormalities were found in the initial chest radiograph and computed tomography of the chest and abdomen. However, a 2-hour follow-up VBGA showed aggravated metabolic acidosis as follows: pH, 7.25; HCO₃⁻, 10.5 mEq/L; BE, -15.2 mEq/L; and lactate, 9.0 mmol/L. Continuous renal replacement treatment (CRRT) was initiated to treat the refractory acidosis. Within 1 hour, metabolic acidosis improved, CRRT was discontinued 15 hours after the initiation. The acidosis did not worsen upon the discontinuation. Mechanical ventilation with antibiotic and steroid therapy was continued for aspiration pneumonia.

Esophagogastroduodenoscopy was performed to search for gastrointestinal damage or perforation before enteral nutrition was initiated. On day 4, mechanical ventilation was weaned given the improved mentality and respiration. A follow-up computed tomography performed on day 5 showed the atelectasis of both upper lobes. Improved consolidation was observed on a follow-up chest radiograph, and the boy was discharged uneventfully on day 13. At 1-month follow-up, he was well without symptoms and radiographic abnormalities other than residual consolidation.

Discussion

This case highlights the 2 points of LDP poisoning: first, this is easy to occur; second, more essentially, pediatricians and emergency physicians should be vigilant for the gradual onset of relevant manifestations. These manifestations include vomiting, coughing, choking, respiratory failure, changes in consciousness, damage to the gastrointestinal mucosa, and metabolic acidosis. In the present case,
the boy had been awoken at the time of presenta-
tion. However, his mentality gradually deterio-
rated 3 hours after the ingestion. This insidious
worsening was possibly caused by metabolic aci-
dosis. Hence, it is important to monitor the grad-
ual changes occurring in children with LDP poi-
sioning.

LDPs are mostly neutral or weakly alkaline, con-
sisting of non-ionic surfactants, anionic surfac-
tants, and propylene glycol. Some pods may lead
to direct caustic injury. Among the components
of the pod, propylene glycol is metabolized into
lactate and pyruvate in vivo, leading to metaboli-
c acidosis. The high concentration of product is
more clinically important than the overall com-
position of LDP.

Ingestion is the most common route of poisoning,
followed by ocular and dermal exposures. Because
LDPs contain a higher amount of surfactants than
non-capsulated laundry detergents, tissue damage
may be more severe if ingested. Vomiting incurs
the aspiration that injures the pulmonary tissue.
Children with LDP poisoning can develop various
manifestations, including nausea, vomiting, cough-
ing, choking, respiratory failure, altered mentality,
esophageal and gastric injuries, and metabolic
acidosis.

There are no specific detoxification methods for
LDP poisoning. A U.S. National Poison Data System-
based study shows dilution, irrigation, and washing
as the most commonly used methods. Although var-
ious methods for supportive therapy, such as intra-
vavenous dexamethasone, epinephrine, nasogastric
feeding, and mechanical ventilation have been used,
the standard treatment for LDP poisoning has not
yet been established. In the current case, the boy
was administered distilled water via a nasogastric
tube for dilution and subsequent removal of the
detergent. In addition, intravenous antibiotics, dex-
amethasone, and mechanical ventilation were given
as the treatment of aspiration pneumonia and res-
piratory distress. Although supportive therapy is
performed in most settings, CRRT may be needed
in rare cases such as this.

Considering the increasing use of LDPs in Korea,
it is necessary to recognize the risk of poisoning
by the pods and the gradual onset of manifesta-
tions. This recognition can result in timely treat-
ment and prevention of poisoning.

ORCID

Da Eun Roh (https://orcid.org/0000-0001-8932-2505)

Conflicts of interest

No potential conflicts of interest relevant to
this article were reported.

Funding source

No funding source relevant to this article was
reported.

References

1. Valdez AL, Casavant MJ, Spiller HA, Chounthirath T, Xiang
H, Smith GA. Pediatric exposure to laundry detergent pods.
2. Centers for Disease Control and Prevention (CDC). Health
hazards associated with laundry detergent pods-United States,
May-June 2012. MMWR Morb Mortal Wkly Rep 2012;61:
825-9.
3. Smith E, Liebelt E, Nogueira J. Laundry detergent pod inges-
tions: is there a need for endoscopy? J Med Toxicol 2014;10:
286-91.
EA, Thomas SH, et al. A review of 4652 exposures to liquid
laundry detergent capsules reported to the United Kingdom
5. Forrester MB. Referral of pediatric laundry detergent pack
exposure reported to poison centers. J Emerg Med 2014;47:
532-8.